首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6068篇
  免费   1308篇
  国内免费   1078篇
化学   4801篇
晶体学   170篇
力学   392篇
综合类   67篇
数学   710篇
物理学   2314篇
  2024年   8篇
  2023年   206篇
  2022年   260篇
  2021年   280篇
  2020年   380篇
  2019年   363篇
  2018年   291篇
  2017年   255篇
  2016年   328篇
  2015年   371篇
  2014年   384篇
  2013年   480篇
  2012年   592篇
  2011年   557篇
  2010年   365篇
  2009年   370篇
  2008年   422篇
  2007年   383篇
  2006年   320篇
  2005年   290篇
  2004年   189篇
  2003年   183篇
  2002年   165篇
  2001年   148篇
  2000年   129篇
  1999年   116篇
  1998年   84篇
  1997年   74篇
  1996年   85篇
  1995年   64篇
  1994年   54篇
  1993年   48篇
  1992年   37篇
  1991年   25篇
  1990年   30篇
  1989年   19篇
  1988年   14篇
  1987年   12篇
  1986年   12篇
  1985年   11篇
  1984年   10篇
  1983年   14篇
  1982年   5篇
  1981年   2篇
  1979年   4篇
  1978年   2篇
  1973年   3篇
  1968年   1篇
  1957年   2篇
  1936年   1篇
排序方式: 共有8454条查询结果,搜索用时 62 毫秒
61.
62.
The β-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM′s conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.  相似文献   
63.
Reactive oxygen species (ROS)-based therapeutic strategies play an important role in cancer treatment. However, in situ, real-time and quantitative analysis of intracellular ROS in cancer treatment for drug screening is still a challenge. Herein we report one selective hydrogen peroxide (H2O2) electrochemical nanosensor, which is prepared by electrodeposition of Prussian blue (PB) and polyethylenedioxythiophene (PEDOT) onto carbon fiber nanoelectrode. With the nanosensor, we find that the level of intracellular H2O2 increases with NADH treatment and that increase is dose-dependent to the concentration of NADH. High-dose of NADH (above 10 mM) can induce cell death and intratumoral injection of NADH is validated for inhibiting tumor growth in mice. This study highlights the potential of electrochemical nanosensor for tracking and understanding the role of H2O2 in screening new anticancer drug.  相似文献   
64.
The difficulties to identify the rate-limiting step cause the lithium (Li) plating hard to be completely avoided on graphite anodes during fast charging. Therefore, Li plating regulation and morphology control are proposed to address this issue. Specifically, a Li plating-reversible graphite anode is achieved via a localized high-concentration electrolyte (LHCE) to successfully regulate the Li plating with high reversibility over high-rate cycling. The evolution of solid electrolyte interphase (SEI) before and after Li plating is deeply investigated to explore the interaction between the lithiation behavior and electrochemical interface polarization. Under the fact that Li plating contributes 40 % of total lithiation capacity, the stable LiF-rich SEI renders the anode a higher average Coulombic efficiency (99.9 %) throughout 240 cycles and a 99.95 % reversibility of Li plating. Consequently, a self-made 1.2-Ah LiNi0.5Mn0.3Co0.2O2 | graphite pouch cell delivers a competitive retention of 84.4 % even at 7.2 A (6 C) after 150 cycles. This work creates an ingenious bridge between the graphite anode and Li plating, for realizing the high-performance fast-charging batteries.  相似文献   
65.
Peptide vaccines have advantages in easy fabrication and high safety, but their effectiveness is hampered by the poor immunogenicity of the epitopes themselves. Herein, we constructed a series of framework nucleic acids (FNAs) with regulated rigidity and size to precisely organize epitopes in order to reveal the influence of epitope spacing and carrier rigidity on the efficiency of peptide vaccines. We found that assembling epitopes on rigid tetrahedral FNAs (tFNAs) with the appropriate size could efficiently enhance their immunogenicity. Further, by integrating epitopes from SARS-CoV-2 on preferred tFNAs, we constructed a COVID-19 peptide vaccine which could induce high titers of IgG against the receptor binding domain (RBD) of SARS-CoV-2 spike protein and increase the ratio of memory B and T cells in mice. Considering the good biocompatibility of tFNAs, our research provides a new idea for developing efficient peptide vaccines against viruses and possibly other diseases.  相似文献   
66.
We report on the largest open-shell graphenic bilayer and also the first example of triply negatively charged radical π-dimer. Upon three-electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2 (Ar=2,6-dimethylphenyl) ( 1 2) was transformed to a triply negatively charged species 1 23.−, which has been characterized by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID). 1 23.− features a 96-center-3-electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π-fused rings with 96 conjugated sp2 carbon atoms. Spin frustration is observed with the frustration parameter f>31.8 at low temperatures in 1 23.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid.  相似文献   
67.
Advancing the performance of the Cu-catalyzed electrochemical CO2 reduction reaction (CO2RR) is crucial for its practical applications. Still, the wettable pristine Cu surface often suffers from low exposure to CO2, reducing the Faradaic efficiencies (FEs) and current densities for multi-carbon (C2+) products. Recent studies have proposed that increasing surface availability for CO2 by cation-exchange ionomers can enhance the C2+ product formation rates. However, due to the rapid formation and consumption of *CO, such promotion in reaction kinetics can shorten the residence of *CO whose adsorption determines C2+ selectivity, and thus the resulting C2+ FEs remain low. Herein, we discover that the electro-kinetic retardation caused by the strong hydrophobicity of quaternary ammonium group-functionalized polynorbornene ionomers can greatly prolong the *CO residence on Cu. This unconventional electro-kinetic effect is demonstrated by the increased Tafel slopes and the decreased sensitivity of *CO coverage change to potentials. As a result, the strongly hydrophobic Cu electrodes exhibit C2+ Faradaic efficiencies of ≈90 % at a partial current density of 223 mA cm−2, more than twice of bare or hydrophilic Cu surfaces.  相似文献   
68.
Catalytic methods which control multiple stereogenic centers simultaneously are highly desirable in modern organic synthesis and chemical manufacturing. Herein, we report a regio-, enantio-, and diastereoselective NiH-catalyzed hydroalkylation process which proceeds with simultaneous control of vicinal stereocenters originating from two readily accessible partners, prochiral internal alkenes (enamides or enecarbamates) and racemic alkyl electrophiles (α-bromoamides or Katritzky salts). This reaction produces high-value β-aminoamides and their derivatives under mild conditions and with precise selectivity. Preliminary studies of the mechanism indicate that the reaction involves an enantioselective syn-hydronickelation to generate an enantiomerically enriched alkylnickel(II) species. Subsequent enantioconvergent alkylation with a racemic alkyl electrophile generates the desired product as a single stereoisomer.  相似文献   
69.
Although large amount of effort has been invested in combating thermal quenching that severely degrades the performance of luminescent materials particularly at high temperatures, not much affirmative progress has been realized. Herein, we demonstrate that the Frenkel defect formed via controlled annealing of Sc2(WO4)3:Ln (Ln=Yb, Er, Eu, Tb, Sm), can work as energy reservoir and back-transfer the stored excitation energy to Ln3+ upon heating. Therefore, except routine anti-thermal quenching, thermally enhanced 415-fold downshifting and 405-fold upconversion luminescence are even obtained in Sc2(WO4)3:Yb/Er, which has set a record of both the Yb3+-Er3+ energy transfer efficiency (>85 %) and the working temperature at 500 and 1073 K, respectively. Moreover, this design strategy is extendable to other hosts possessing Frenkel defect, and modulation of which directly determines whether enhanced or decreased luminescence can be obtained. This discovery has paved new avenues to reliable generation of high-temperature luminescence.  相似文献   
70.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials are considered a class of organic materials with exceptional electronic and optical properties, which make them promising for the applications in organic light-emitting diodes (OLEDs). In this study, we improved, synthesized, and characterized a multiple-resonance type emitter based on the assembly of MR-building blocks (MR-BBs). By optimizing the geometric arrangement of MR-BBs, we were able to generate narrowband emission in the longer wavelength region and shorten the delayed excited-state lifetime, resulting in improved emission efficiency compared to the parent molecule. Our proof-of-concept molecule, m-DBCz, exhibited narrowband yellowish-green TADF emission with a full width at half-maximum of 32 nm and a small singlet-triplet energy gap of 0.04 eV. The OLED developed using m-DBCz as the emitter demonstrated electroluminescence at 548 nm and achieved a high external quantum efficiency (EQE) of 34.9 %. Further optimization of the device resulted in a high external quantum efficiency of 36.3 % and extremely low efficiency roll-off, with EQE values of 30.1 % and 27.7 % obtained even at high luminance levels of 50 000 and 100 000 cd m−2. These results demonstrate the full potential of MR-TADF materials for applications on ultrahigh-luminance OLEDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号